WORLD'S BEST PURE AND CLEAN GPH QUANTUM CONSTRUCTION STEEL With historically world's most innovative and Asia's first Quantum Technology at GPH ispat we are producing and marketing world's best GPH Quantum construction steel. We have reached new horizons of prosperity in the domestic construction industry while also taking Bangladesh to new heights of pride across the world. GPH QUANTUM B500DWR → ### **GPH ISPAT** ### With Quantum Technology GPH Ispat has embarked on a new journey with the cutting-edge innovation in history of steel making and has proudly introduced Asia's first Quantum Electric Arc Furnace and Winlink Technology. A completely green, world class factory is the continuation of our enduring commitment to build the future Bangladesh. ### World's Best Pure and Clean ### GPH QUANTUM **Construction Steel** The story of GPH Ispat is not an ordinary one. It all began with a vision. A vision for development. Having belief in sustainable development GPH Ispat is continuously working for the development and people's welfare of the country. GPH Ispat has established the Asia's first Quantum EAF Technology based factory to enrich the steel sector in Bangladesh. GPH Ispat is one of the leading steel manufacturing company in Bangladesh that ensures the best quality of steel complying the national and international standards. GPH Ispat has introduced first in Bangladesh the level 4 automation in steel manufacturing industry and ERP-enriched state-of-the-art technology with fully computerized integrated digital industry known as Industry 4.0. This makes it possible to produce the highest quality products using comparatively less energy. The main purpose of all our efforts are to bring you the world class construction Re-bar through advanced technology. We have a big dream, a dream of building a new Bangladesh, and you are the companions in this dream. ### Vision To provide the foundation for building the infrastructure of Bangladesh towards High-Income-Country (HIC) with the true GPH philosophy. ### Mission The trusted brand of Bangladesh leading the steel sector with innovative products leveraging cutting edge technology. ### 3. Water Treatment Plant with Zero Discharge Technology: Only GPH Ispat factory in Bangladesh has its own water harvesting system and water treatment plant with zero discharge technology, so no water is wasted. ### 4. Own Substation: The factory has a 230/33 KV GIS substation for uninterrupted power supply. The amount of electricity saved in this green factory, can be utilized in 1 lakh 92 thousand households per year. ### 5. Natural Gas Savings: The amount of natural gas saved in the GPH QUANTUM factory can meet the gas demands of 35,000 households per year. ### Why GPH QUANTUM technology is the best in making construction steel? ### 1. Completely Pure Steel: GPH QUANTUM Re-bar is completely inclusion free because it contains- - Scrap pre-heating process: The GPH QUANTUM pre-heating chamber of the arc furnace heats the scrap to a temperature of 600-degree C. During this process, it removes the paint, rust, moisture and primary impurities present in the scrap. - Oxygen lancing and argon bottom purging: GPH QUANTUM removes unnecessary carbon and phosphorus by oxygen lancing and bottom purging in the arc furnace, turning the heated mixture into a homogenized mixture. - Flat bath operation and bottom tapping: PURE FLAT BATH OPERATION is done by preparing 70 MT HOT HEEL in GPH QUANTUM arc furnace having holding capacity of 150 MT, where the chemical reaction of carbon and oxygen creates FOAMY SLAG, and removes phosphorus and other impurities. 80 MT 100% slag free metal is collected into the ladle by tilting the furnace at a 4-degree angle through bottom tapping in a siphonic process. The GPH QUANTUM Re-bar is much more earthquake resistant than other Re-bars in the market for its 100% refinement. So the engineers rely on GPH QUANTUM Re-bar for any mega structure. ### 2. Homogenized Chemical Mixture: The chemical composition of GPH QUANTUM Re-bar is homogenized because- - Ladle Refining Furnace (LRF): Harmful sulfur and other inclusions are removed by secondary refinement in LRF from the liquid metal coming from the QUANTUM arc furnace. The perfect homogenized chemical composition in GPH QUANTUM Re-bar is ensured by mixing the required chemical ingredients in LRF. - High Speed Continuous Casting Machine (CCM): Closed casting is maintained at each level which protects the liquid steel from oxidizing and adding impurities (from the surrounding atmosphere) and maintains the quality of the steel. So, the homogenized chemical properties are achieved in the Re-bar and the construction becomes stronger and safer. **LADLE REFINING FURNACE** **CLOSED CASTING** ### 3. Steel with High Ductility and Firm Bonding Strength: - Billets made in CCM are directly rolled in the most advanced and latest high-speed rolling mill with Winlink technology. The GPH QUANTUM Re-bar is more ductile than any other Re-bar in the market due to Quantum and Winlink technology. - The new generation housing-less free-floating rolling stands and Tungsten Carbide Rolls ensure the uniform diameter of the Re-bar, the relative rib area and proper transverse rib height that makes the construction more secure by establishing a strong bond between the concrete and the Re-bar. ### 4. Uniform Strength, Corrosion Resistant and Superior Weldability: - Fully automatic computerized Quenching Method ensures a uniform Martensite Ring in the Re-bar; that is why there is no strength variations from start to end. - The right level of carbon equivalent ensures GPH QUANTUM re-bar's superior weldability (improved welding ability). - 100% refining and automatic computerized quenching system creates a light anti-corrosive scale layer on the Re-bar surface which makes the Re-bar more corrosion resistant. # TUNGSTEN CARBIDE ROLL ### 5. Shiny Surface: The use of more tungsten carbide rolls in the rolling process makes the surface of the GPH QUANTUM Re-bar shinier. ### 6. Quality Consistency: • For quality control we have 2000 KN Automatic Universal Testing Machine, Universal Hardness Testing Machine, Profilometer, Bend-rebend Testing Machine, X-ray Fluorescence Spectrometer (XRF), Microscope, Impact Testing Machine, Bond Testing, Ring Testing, Macro Etching and Wet Chemical Lab. Moreover, we have advanced M12 Spectrometer from Germany. At each stage of production, the state-of-the-art GPH lab is rigorously controlled by these testing machines to maintain the quality of the Re-bar. **BOND TESTING** **MACRO ETCHING SETUP** Every stage of GPH QUANTUM Re-bar production such as scrap processing and charging, melting, refining, casting and rolling processes are integrated and uninterrupted. The use of world class technology ensures perfect homogenized chemical properties, uniform strength, superior ductility and bendability. That is why GPH QUANTUM Re-bar guarantees safe and strong structure. Results Of Actual Dimensions, Rib Geometry, Tension, Bend, Re-bend And Chemical Composition Test Of Grade B500DWR Quantum Re-bar at Gph Ispat Limited: | Nominal | Nominal | | | | Rib Ge | ometry | | Mechanical Properties | | | | | | | | | | | | | | | | |-----------------------|---|--------------------|--------------------------------------|---------------------------------|-----------------------------------|----------------------------------|--|------------------------------|--|-----------------|---|------|--|---|-------------------------------|------------------|---------|---|------|------|-------|-------|------| | Bar
Diameter,
D | Cross
Sectional
Area
Under
Test | Actual
Diameter | Actual
Mass per
Unit
Length | Trans
verse
Rib
Height | Longit
udinal
Rib
Height | Trans
verse
Rib
Spacing | Relative
Rib
Area,
f _R | Yield
or
Proof
Load | Yield
or
Proof
Strength
(YS) | Tensile
Load | sile lensile 15/ Elong
ad Strength YS - 2
(TS) Maxi | | % Total
Elongation
at
Maximum
Force, Agt | % Total
Elongation
After
Fracture, A | Bend Re-
Test Bend
Test | | Quality | Tested chemic
ty composition o
Quantum reba | | | | | | | (mm) | (mm²) | | (kg/m) | (mm) | | | | (KN) | (MPa) | (KN) | (MPa) | | (Gauge
Length
=200
mm) | (Gauge
Length
h=5D
mm) | | | | С% | Si% | | Р% | S% | CEV | | 8 | 50.27 | 7.90 | 0.385 | 0.70 | 0.76 | 5.95 | 0.045 | 27 | 540 | 34 | 685 | 1.27 | 10.5 | 23.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.18 | 0.82 | 0.019 | 0.020 | 0.49 | | 8 | 50.27 | 7.93 | 0.387 | 0.72 | 0.75 | 5.95 | 0.048 | 27 | 545 | 35 | 690 | 1.27 | 10.5 | 23.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.25 | 0.84 | 0.021 | 0.021 | 0.50 | | 10 | 78.54 | 9.92 | 0.606 | 0.83 | 0.93 | 6.70 | 0.052 | 42 | 535 | 54 | 685 | 1.28 | 10.0 | 22.0 | Satisfa | Satisfa
ctory | PASSED | 0.29 | 0.23 | 0.81 | 0.018 | 0.018 | 0.49 | | 10 | 78.54 | 9.89 | 0.603 | 0.90 | 0.89 | 6.70 | 0.054 | 43 | 545 | 55 | 700 | 1.28 | 10.5 | 22.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.18 | 0.85 | 0.020 | 0.026 | 0.50 | | 12 | 113.1 | 11.90 | 0.872 | 1.02 | 1.10 | 8.10 | 0.059 | 62 | 550 | 79 | 700 | 1.27 | 11.0 | 23.0 | Satisfa | Satisfa
ctory | PASSED | 0.28 | 0.21 | 0.82 | 0.019 | 0.021 | 0.48 | | 12 | 113.1 | 11.93 | 0.877 | 1.03 | 1.06 | 8.10 | 0.061 | 62 | 545 | 79 | 700 | 1.28 | 10.5 | 22.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.22 | 0.81 | 0.018 | 0.027 | 0.49 | | 16 | 201.06 | 15.91 | 1.559 | 1.13 | 1.11 | 10.70 | 0.062 | 108 | 535 | 139 | 690 | 1.29 | 11.5 | 23.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.22 | 0.83 | 0.015 | 0.019 | 0.50 | | 16 | 201.06 | 15.92 | 1.562 | 1.13 | 1.08 | 10.70 | 0.065 | 109 | 540 | 140 | 695 | 1.29 | 11.0 | 23.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.18 | 0.86 | 0.019 | 0.025 | 0.49 | | 20 | 314.16 | 19.89 | 2.438 | 1.52 | 1.43 | 13.70 | 0.071 | 168 | 535 | 218 | 695 | 1.30 | 10.5 | 23.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.23 | 0.85 | 0.021 | 0.029 | 0.49 | | 20 | 314.16 | 19.91 | 2.442 | 1.45 | 1.56 | 13.70 | 0.07 | 170 | 540 | 220 | 700 | 1.30 | 11.5 | 22.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.28 | 0.20 | 0.88 | 0.026 | 0.027 | 0.49 | | 25 | 490.88 | 24.83 | 3.8 | 2.05 | 2.15 | 16.55 | 0.072 | 270 | 550 | 353 | 720 | 1.31 | 10.5 | 22.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.19 | 0.83 | 0.022 | 0.020 | 0.49 | | 25 | 490.88 | 24.85 | 3.806 | 2.10 | 2.05 | 16.55 | 0.075 | 265 | 540 | 346 | 705 | 1.31 | 10.0 | 22.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.28 | 0.23 | 0.88 | 0.025 | 0.023 | 0.49 | | 28 | 615.75 | 27.91 | 4.799 | 2.30 | 2.20 | 18.60 | 0.077 | 339 | 550 | 443 | 720 | 1.31 | 11.0 | 21.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.24 | 0.90 | 0.016 | 0.020 | 0.50 | | 28 | 615.75 | 27.92 | 4.804 | 2.25 | 2.30 | 18.60 | 0.076 | 336 | 545 | 440 | 715 | 1.31 | 10.5 | 22.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.29 | 0.21 | 0.86 | 0.023 | 0.022 | 0.49 | | 32 | 804.25 | 31.83 | 6.241 | 2.40 | 2.90 | 21.10 | 0.082 | 438 | 545 | 583 | 725 | 1.33 | 11.0 | 20.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.22 | 0.92 | 0.022 | 0.026 | 0.51 | | 32 | 804.25 | 31.84 | 6.248 | 2.45 | 3.00 | 21.10 | 0.083 | 434 | 540 | 579 | 720 | 1.33 | 10.5 | 21.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.25 | 0.90 | 0.018 | 0.019 | 0.51 | | 40 | 1256.64 | 39.67 | 9.696 | 2.85 | 3.57 | 27.65 | 0.085 | 679 | 540 | 911 | 725 | 1.34 | 10.0 | 20.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.30 | 0.19 | 0.92 | 0.022 | 0.022 | 0.51 | | 40 | 1256.64 | 39.69 | 9.705 | 2.95 | 3.65 | 27.65 | 0.081 | 691 | 550 | 924 | 735 | 1.34 | 10.5 | 20.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.31 | 0.22 | 0.95 | 0.019 | 0.023 | 0.53 | | 50 | 1963.5 | 49.80 | 15.28 | 3.60 | 3.90 | 34.10 | 0.089 | 1080 | 550 | 1443 | 735 | 1.34 | 10.5 | 20.0 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.31 | 0.26 | 1.01 | 0.018 | 0.022 | 0.54 | | 50 | 1963.5 | 49.78 | 15.266 | 3.55 | 4.00 | 34.10 | 0.088 | 1090 | 555 | 1463 | 745 | 1.34 | 10.0 | 20.5 | Satisfa
ctory | Satisfa
ctory | PASSED | 0.32 | 0.25 | 1.05 | 0.021 | 0.023 | 0.56 | ### Nominal Weight, Dimension and Dimensional Tolerances of GPH B500DWR QUANTUM Re-bar as per BDS ISO 6935-2:2016: | Nominal
Diameter | Nominal
Weight | Permissible
Tolerance | Cross-sectional
Area | Length | (Per ton) | Ton and Piece Count
(1 pc=12 meter approx.) | |---------------------|-------------------|--------------------------|-------------------------|---------|-----------|--| | mm | Kg/m | % | mm ² | m | ft | no of re-bar | | 8 | 0.395 | ±8 | 50.3 | 2534.31 | 8314.66 | 211 (1 ton) | | 10 | 0.617 | ±6 | 78.5 | 1621.96 | 5321.38 | 135 (1 ton) | | 12 | 0.888 | ±6 | 113 | 1126.36 | 3695.40 | 94 (1 ton) | | 16 | 1.58 | ±5 | 201 | 633.58 | 2078.67 | 53 (1 ton) | | 20 | 2.47 | ±5 | 314 | 405.49 | 1330.35 | 34 (1 ton) | | 25 | 3.85 | ±4 | 491 | 259.51 | 851.42 | 22 (1 ton) | | 28 | 4.84 | ±4 | 616 | 206.88 | 678.75 | 18 (1 ton 45 kg) | | 32 | 6.31 | ±4 | 804 | 158.39 | 519.67 | 14 (1 ton 60 kg) | | 40 | 40 9.86 ±4 | | 1257 | 101.37 | 332.59 | 9 (1 ton 65 kg) | | 50 | 50 15.42 ±4 | | 1964 | 64.88 | 212.86 | 6 (1 ton 110 kg) | ### Mechanical Properties of GPH B500DWR QUANTUM Re-bar as per BDS ISO 6935-2:2016: | Steel | y Class | International
Standard | Yie
Stren | | Tensile
Strength | Elongation
at Max force,
EMF | TS/YS | Elongation after
Fracture | Bend Test | Re-Bend Test | | Ri | b Geometry | | |----------|-----------|---------------------------|-----------------------|-----------------------|-----------------------|------------------------------------|--------|------------------------------|---|---|---------------------------------|-----------------------------------|------------------------|------------------------------------| | Grade | Ductility | Standard | Stien | gui | Sueligui | Gauge
Length=200
mm | | Gauge Length=5D mm | Mandrel
Diameter
(mm) | Mandrel
Diameter
(mm) | Transverse
Rib Height,
mm | Longitudinal
Rib Height,
mm | Rib Spacing,
mm | Relative Rib
Area* | | B500 DWR | D | 6935-2:2016 | 72500
Psi
(Min) | 94250
Psi
(Max) | 90625
Psi
(Min) | (Min) | (min.) | .3% (Min) | ≤16mm: 3D
m<0≤32mm: 6D
m<0≤50mm: 7D | <u><</u> 16mm: 5D
16mm<0 <u>2</u> 25mm: 8D
25mm<0 <u>5</u> 50mm: 10D | 0.065D
(min.) | 0.15D
(max.) | 0.5D-1.0D
0.5D-0.8D | 12 f _R | | | | BDS ISO (| 500
MPa
(Min) | 650
MPa
(Max) | 625
MPa
(Min) | %8 | 1.25 | 13% | ≤10
16mm<
32mm< | <u>1</u>
16mm²
25mm< | , | , | D<10;
D≥10; | 6 < D ≤ 1
D > 12 f _t | ^{*}Note: Relative rib area as per BS 4449-2005+A3:2016 Figure: Typical Stress -Strain Curve of Low Carbon Steel ### **GPH QUANTUM B500DWR follows these standards:** - BDS ISO 6935-2:2016 (Bangladesh Standard) - IS 1786:2008 (Indian Standard) ### **Bond Performance:** As per BS 4449:2005, The characteristics of relative rib area (f_R) is as follows: $6 < d \le 12$ $f_R \ge 0.040$ d > 12 $f_R \ge 0.056$ Results are obtained from fully automatic re-bar surface geometry measurement device (Profilometer) ECM Datensysteme RM-303 Made: Germany | Row | Dian | neter | | Rib Height | | Rib | Inclination | | Row | Head | Rib. | Long.rib. | Relative | |------|--------------|--------------|----------------|------------------|------------------|----------------|--------------|-------------|----------------|---------------|----------------|----------------|----------------------------------| | | Nom.
(mm) | Real
(mm) | Center
(mm) | 1/4 Pnts
(mm) | 3/4 Pnts
(mm) | dist.c
(mm) | Alpha
(°) | Beta
(°) | dist.e
(mm) | width
(mm) | length
(mm) | Height
(mm) | rib area
f_R | | 1 | 16.0 | 15.94 | 1.53 | 1.44 | 1.22 | 10.5 | 55 | 66 | 2.43 | 1.20 | 24.9 | 1.06 | 0.102 | | 2 | | | 1.59 | 1.39 | 1.50 | 10.5 | 53 | 64 | 2.43 | 1.30 | 25.3 | 0.97 | | | Mean | | | 1.56 | 1.42 | 1.36 | 10.5 | 54.0 | 65 | Σ:4.86 | 1.25 | RL.W | 1.02 | +82.1% | | | | | | | | | | 200 | | | | | | ### Chemical Composition of Product Analysis as per International Standard: | Element | BDS ISO 6935-2: 2016
(All Max) | |---------|-----------------------------------| | C% | 0.35 | | Si% | 0.60 | | Mn% | 1.88 | | Р% | 0.048 | | S% | 0.048 | | N% | 0.014 | | CEV% | 0.66 | Carbon Equivalent Value, CEV will be calculated using below equation, CEV= C+ $$\frac{Mn}{6}$$ + $\frac{(Cr + V + Mo)}{5}$ + $\frac{(Cu + Ni)}{15}$ where C, Mn, Cr, V, Mo, Cu and Ni are the mass fractions, expressed as percentages of the respective chemical elements of the steel. ### The Bangladesh We Want to Build GPH's journey is based on its determination to build Bangladesh on a strong and solid foundation. Our country will be witnessing world class factories, huge buildings, international standard roads, highways, flyovers, bridges, tunnels and many other facilities. An outstanding installation will be made in this country, which will attract tourists from home and abroad. A stadium will be built where the Olympic or World Cup will be held. We want to build this better Bangladesh with you. Corporate Office: Crown Chamber, 325 Asadgonj, Chattogram-4000, Bangladesh Tel: +88 031 631460 Fax: +88 031 610995 Email: info@gphispat.com.bd Dhaka Office: Hamid Tower (3rd & 11th floor) 24, Gulshan C/A Circle-2, Dhaka-1212 Tel: +88 02 222260177 +88 02 222280366 Fax: +88 02 9880366 Email: salesdhk@gphispat.com.bd Factory: Mosjiddah, Kumira, Sitakunda, Chattogram Cell: +88 01723 912387 Email: factory@gphispat.com.bd